On the complex oscillation of non-homogeneous linear differential equations with meromorphic coefficients
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we investigate the complex oscillation of <BR><I>f</I><SUP>(<I>k</I>)</SUP>+<I>b</I><SUB><I>k</I>−1</SUB><I>f</I><SUP>(<I>k</I>−1)</SUP>+…+<I>b</I><SUB>0</SUB><I>f</I>=<I>B</I>(<I>z</I>), <BR>where <I>b</I><SUB><I>k</I>−<I>j</I></SUB>({\jmath}=1, …, <I>k</I>) are rational functions, <I>B</I>(<I>z</I>) is a meromorphic funciton, and obtain general estimates of the exponent of convergence of the zero-sequence and the pole-sequence of solutions for the above equation.
- 国立大学法人 東京工業大学大学院理工学研究科数学専攻の論文
国立大学法人 東京工業大学大学院理工学研究科数学専攻 | 論文
- Noncommutative extension of an integral representation theorem of entropy
- Newton-Puiseux approximation and Lojasiewicz exponents
- Complex hypersurfaces diffeomorphic to affine spaces
- Integral means for the first derivative of Blaschke products
- Cesàro summability of successively differentiated series of a Fourier series and its conjugate series