Number of deficient values of a class of meromorphic function
スポンサーリンク
概要
- 論文の詳細を見る
We proved the following Theorem<BR><I>Theorem. Let f(z) be a meromorphic function of lower order</I> μ<∞. <I>If</I> \underset{<I>a</I>}Σδ(<I>a</I>, <I>f'</I>)=2 then we have<BR><I>P</I><SUB>0</SUB>+<I>P</I><SUB>1</SUB>{≤}μ+1, <BR><I>where</I> <I>P</I><SUB>0</SUB>, <I>P</I><SUB>1</SUB> <I>are the number of finite deficient values of</I> <I>f</I>(<I>z</I>), <I>f'</I>(<I>z</I>) <I>respectively</I>.
- 国立大学法人 東京工業大学大学院理工学研究科数学専攻の論文
国立大学法人 東京工業大学大学院理工学研究科数学専攻 | 論文
- Noncommutative extension of an integral representation theorem of entropy
- Newton-Puiseux approximation and Lojasiewicz exponents
- Complex hypersurfaces diffeomorphic to affine spaces
- Integral means for the first derivative of Blaschke products
- Cesàro summability of successively differentiated series of a Fourier series and its conjugate series