BAYESIAN SELECTION ON THE NUMBER OF FACTORS IN A FACTOR ANALYSIS MODEL
スポンサーリンク
概要
- 論文の詳細を見る
This paper considers a Bayesian approach for selecting the number of factors in a factor analysis model with continuous and polytomous variables. A procedure for computing the important statistic in model selection, namely the Baves factor, is developed via path sampling. The main computation effort is on simulating observations from the appropriate posterior distribution. This task is done by a hybrid algorithm which combines the Gibbs sampler and the Metropolis-Hastings algorithm. Bayesian estimates of thresholds, factor loadings, unique variances, and latent factor scores as well as their standard errors can be produced as by-products. The empirical performance of the proposed procedure is illustrated by means of a simulation study and a real example.
- 日本行動計量学会の論文
日本行動計量学会 | 論文
- 2. Bayesian Generalized Bradley-Terry Model using RJMCMC
- 予測変数を伴う展開型項目反応モデル(一般セッション IRT)
- 刺激が複数の要因の影響下にあるときの尺度構成法 : Bradley-Terryモデルを用いて(セッションN-11(MK202) 一般セッション 心理2)
- プログラミング演習支援のためのコンパイルエラー分析(e-learning・e-testing)
- 4.問題解決力を涵養する統計教育支援教材の研究開発(特別セッション 問題解決力を育む統計教育の展開)