HIERARCHICAL CLUSTERING METHOD USING PROBABILISTIC SIMILARITY MEASURE
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we propose a new hierarchical clustering method, which is useful to find appropriate clusters of attributes from given dichotomous or frequency data. Important features of our method are 1) the similarity between two attributes is defined as a probability of their pattern vectors being observed under the hypothesis of independence, 2) for each generated cluster, one pattern vector is defined in a natural manner, and 3) it can be used freely without distinguishing the frequency data from the dichotomous one. A typical frequency data is analyzed to illustrate how our method works effectively. The discussion on similarities among objects is also included to propose a new similarity measure based on our clustering method.
- 日本行動計量学会の論文
日本行動計量学会 | 論文
- 2. Bayesian Generalized Bradley-Terry Model using RJMCMC
- 予測変数を伴う展開型項目反応モデル(一般セッション IRT)
- 刺激が複数の要因の影響下にあるときの尺度構成法 : Bradley-Terryモデルを用いて(セッションN-11(MK202) 一般セッション 心理2)
- プログラミング演習支援のためのコンパイルエラー分析(e-learning・e-testing)
- 4.問題解決力を涵養する統計教育支援教材の研究開発(特別セッション 問題解決力を育む統計教育の展開)