Enhancement of the Growth of Helicobacter pylori in Brucella Broth by Hydrogen Peroxide
スポンサーリンク
概要
- 論文の詳細を見る
We found that a sub-lethal concentration of hydrogen peroxide (HPOx) enhanced the growth of Helicobacter pylori in Brucella broth supplemented with 10% fetal bovine serum (BB/FBS). The enhancement was evident at 0.1mM HPOx and reached a maximun at 3.5mM. The growth stimulation was dependent on the basal media used; when brain heart infusion broth (BHIB) was used instead of BB, the growth was not altered regardless of the presence or absence of HPOx. Furthermore, the growth in BHIB/FBS was comparable to that in BB/FBS plus 3.5mM HPOx. This suggested that the enhancement of growth by HPOx resulted from the derepression of the inhibitory factor existing in BB by HPOx. The inhibitory substance seemed to be bisulfite salt since the bacteria grew to a similar extent in bisulfite-less Brucella broth (BLBB)/FBS compared to the bacterial growth in BHIB/FBS and BB/FBS plus HPOx. These results indicate that the detoxification of bisulfite in BB can be easily achieved by simply adding HPOx to the medium, which causes the oxidation of bisulfite to bisulfate, a less-toxic compound to the bacterial growth. Since we also found that the morphology and cellular protein profile of BB/FBS-cultured bacteriawere apparently different from those cultured in BLBB/FBS, we propose that the use of BB for primary isolation and cultivation of H. pylori should be limited on certain occasions, or if necessary, BB can be used after detoxification of the bisulfite by the addition of a low concentration of HPOx.
- 微生物学・免疫学学会連合の論文
微生物学・免疫学学会連合 | 論文
- The Structural Proteins of Newcastle Disease Virus
- The Pathogenicity of Newcastle Disease Virus Isolated from Migrating and Domestic Ducks and the Susceptibility of the Viral Glycoproteins to Proteolytic Cleavage
- Analysis of Nuclear Accumulation of Influenza Nucleoprotein Antigen Using a Temperature-Sensitive Mutant
- Enhancement of fusion from within by Antiviral Antibody in Cells Infected with Newcastle Disease Virus
- Analysis of Nuclear Accumulation of Influenza Nucleoprotein Antigen in the Presence of p-Fluorophenylalanine