Pathogenicity of Glycoprotein C-Deficient Herpes Simplex Virus 1 Strain TN-1 Which Encodes Truncated Glycoprotein C
スポンサーリンク
概要
- 論文の詳細を見る
A clinical isolate of herpes simplex virus 1 (TN-1) from a stromal keratitis patient was found to be defective in the glycoprotein C (gC) gene (UL44), thus resulting in the production of truncated gC upon infection. To study the pathogenetic role of truncated gC, we prepared a recombinant LTN-8 derived from TN-1 with deletions of the 1.5 kilobase pairs of the gC gene including the initiation codon. A penetration assay revealed LTN-8 to be less efficient in its penetration ability than TN-1, the laboratory strain KOS and RTN-1-20-3, a recombinant derived from TN-1 with the KOS gC gene. The penetration of LTN-8 was facilitated by the addition of TN-1-infected culture medium. TN-1 virus preparations had no hemagglutinating activity. However, the animals infected with TN-1 did develop hemagglutination inhibition (HI) antibodies. The LTN-8-infected animals did not develop HI antibodies. The pathogenicity in BALB/c mice following either corneal, intraperitoneal or intracerebral inoculation did not significantly differ among TN-1, RTN-1-20-3 or LTN-8. Our results indicate that truncated gC was sufficient for the induction of HI antibodies and was also able to facilitate penetration in vitro. Although truncated gC might be a virulence factor acting as a decoy, both truncated gC and intact gC had little effect on the outcome following intracerebral, intraperitoneal or corneal inoculation.
- 微生物学・免疫学学会連合の論文
微生物学・免疫学学会連合 | 論文
- The Structural Proteins of Newcastle Disease Virus
- The Pathogenicity of Newcastle Disease Virus Isolated from Migrating and Domestic Ducks and the Susceptibility of the Viral Glycoproteins to Proteolytic Cleavage
- Analysis of Nuclear Accumulation of Influenza Nucleoprotein Antigen Using a Temperature-Sensitive Mutant
- Enhancement of fusion from within by Antiviral Antibody in Cells Infected with Newcastle Disease Virus
- Analysis of Nuclear Accumulation of Influenza Nucleoprotein Antigen in the Presence of p-Fluorophenylalanine