ANALYSIS OF COUNT DATA USING POWER VARIANCE FUNCTION
スポンサーリンク
概要
- 論文の詳細を見る
This paper considers two estimation methods for count data with a power variance function. One is the maximum likelihood method based on a negative binomial model with a power variance function which is not the standard application of a negative-binomial model. Another is the quasilikelihood/pseudolikelihood (QL/PL) estimating equation method. The QL/PL method is a robust method and is applicable to a more general exponential dispersion model with a power variance function. The asymptotic efficiency of the QL/PL estimates were calculated relative to the maximum likelihood estimates, and demonstrated that the mean parameter estimate is approximately fully efficient. If the power parameter of the variance is close to one, then the efficiency of the power parameter of the variance is close to one. It was also found that, in a negative-binomial model with power variance function, mean parameter estimates and variance parameter estimates are approximately asymptotically independnet. An example of data analysis using power variance function is given.
- 日本統計学会の論文
日本統計学会 | 論文
- 高次元多変量分析におけるパーミュテーションテスト(日本統計学会75周年記念特集(II))
- E-2 Wishart行列の固有ベクトルに関するパーミュテーション検定について
- D-1 相関係数に関するいくつかの検定問題について(多変量解析(1))(日本統計学会第69回大会記録)
- A-1 ベイズ情報量基準のある適用における妥当性(日本統計学会第67回大会記録 : 統計一般理論(3)ベイズ統計学)
- 教育・学習支援のためのデータ指向統計解析環境(統計教育)