Darboux transformations and isometric immersions of Riemannian products of space forms
スポンサーリンク
概要
- 論文の詳細を見る
By using the Darboux transformation in Soliton theory, we give the explicit construction for local isometric immersions of the Riemannian product <I>M</I><SUB>1</SUB><SUP><I>n</I><SUB>1</SUB></SUP>(<I>c</I><SUB>1</SUB>)×<I>M</I><SUB>2</SUB><SUP><I>n</I><SUB>2</SUB></SUP>(<I>c</I><SUB>2</SUB>) into space forms <I>M</I><SUP><I>m</I></SUP>(<I>c</I>) with flat normal bundle via purely algebraic algorithm.
- 国立大学法人 東京工業大学大学院理工学研究科数学専攻の論文
国立大学法人 東京工業大学大学院理工学研究科数学専攻 | 論文
- Noncommutative extension of an integral representation theorem of entropy
- Newton-Puiseux approximation and Lojasiewicz exponents
- Complex hypersurfaces diffeomorphic to affine spaces
- Integral means for the first derivative of Blaschke products
- Cesàro summability of successively differentiated series of a Fourier series and its conjugate series