On spectral characterizations of minimal hypersurfaces in a sphere
スポンサーリンク
概要
- 論文の詳細を見る
Let <I>M</I> be a closed minimal hypersurface in an Euclidean sphere <I>S</I><SUP><I>n</I>+1</SUP>(1). We first prove that a minimal isoparametric hypersurface <I>M</I> in a 4-dimensional sphere is completely determined by its spectrum Spec<SUP><I>p</I></SUP>(<I>M</I>), here <I>p</I>∈{0, 1, 2, 3}. In higher dimensional sphere, we prove that if Spec<SUP><I>p</I></SUP>(<I>M</I>)=Spec<SUP><I>p</I></SUP>(<I>M</I><SUB><I>m</I>, <I>n</I>−<I>m</I></SUB>) for <I>p</I>=0, 1, where<BR><I>M</I><SUB><I>m</I>, <I>n</I>−<I>m</I></SUB>=<I>S</I><SUP><I>m</I></SUP>(√{\frac{<I>m</I>}{<I>n</I>}})×<I>S</I><SUP><I>n</I>−<I>m</I></SUP>(√{\frac{<I>n</I>−<I>m</I>}{<I>n</I>}})<BR>is a Clifford torus, then <I>M</I> is <I>M</I><SUB><I>m</I>, <I>n</I>−<I>m</I></SUB>. Furthermore, we prove that <I>M</I><SUB><I>n</I>, <I>n</I></SUB>→<I>S</I><SUP>2<I>n</I>+1</SUP>(1) (<I>n</I>{≥}4) is also characterized by Spec<SUP><I>p</I></SUP>(<I>M</I><SUB><I>n</I>, <I>n</I></SUB>) for some <I>p</I>=<I>p</I>(<I>n</I>).
- 国立大学法人 東京工業大学大学院理工学研究科数学専攻の論文
国立大学法人 東京工業大学大学院理工学研究科数学専攻 | 論文
- Noncommutative extension of an integral representation theorem of entropy
- Newton-Puiseux approximation and Lojasiewicz exponents
- Complex hypersurfaces diffeomorphic to affine spaces
- Integral means for the first derivative of Blaschke products
- Cesàro summability of successively differentiated series of a Fourier series and its conjugate series