ON AVERAGING VARIABLES IN A CONFIRMATORY FACTOR ANALYSIS MODEL
スポンサーリンク
概要
- 論文の詳細を見る
The normal theory maximum likelihood and asymptotically distribution free methods are commonly used in covariance structure practice. When the number of observed variables is too large, neither method may give reliable inference due to bad condition numbers or unstable solutions. The main existing solution to the problem of high dimension is to build a model based on marginal variables. This practice is inefficient because the omitted variables may still contain valuable information regarding the structural model. In this paper, we propose a simple method of averaging proper variables which have similar factor structures in a confirmatory factor model. The effects of averaging variables on estimators and tests are investigated. Conditions on the relative errors of the measured variables are given that verify when a model based on averaged variables can give better estimators and tests than one based on omitted variables. Our method is compared to the method of variable selection based on mean square error of predicted factor scores. Some aspects related to averaging, such as improving the normality of observed variables, are also discussed.
- 日本行動計量学会の論文
日本行動計量学会 | 論文
- 2. Bayesian Generalized Bradley-Terry Model using RJMCMC
- 予測変数を伴う展開型項目反応モデル(一般セッション IRT)
- 刺激が複数の要因の影響下にあるときの尺度構成法 : Bradley-Terryモデルを用いて(セッションN-11(MK202) 一般セッション 心理2)
- プログラミング演習支援のためのコンパイルエラー分析(e-learning・e-testing)
- 4.問題解決力を涵養する統計教育支援教材の研究開発(特別セッション 問題解決力を育む統計教育の展開)