Surfaces with extreme value of curvature in Alexandrov spaces
スポンサーリンク
概要
- 論文の詳細を見る
In an Alexandrov space with curvature bound, we prove that a curvature takes the extreme value over some specially constructed surfaces if and only if each of the surfaces is totally geodesic and locally isometric to a surface with constant curvature.
- 東北大学大学院理学研究科数学専攻の論文
東北大学大学院理学研究科数学専攻 | 論文
- ON RIEMANN SPACES WHOSE HOMOGENEOUS HOLONOMY GROUPS ARE INTEGRABLE
- FIELDS OF ISOCLINE TANGENT PLANES ALONG A CURVE IN A EUCLIDEAN 4-SPACE
- NOTES ON ABSTRACT DISTANCE GEOMETRY : I. THE ALGEBRAIC DESCRIPTION OF GROUND SPACES
- ON THE CENTRAL LIMIT THEOREM
- NOTES ON FOURIER ANALYSIS (XXVII) A THEOREM ON CESÀRO SUMMATION