Particle Discharge Characteristics from the Nozzle of a Thin Tube Immersed in Liquid Subjected to Ultrasonic Wave Force [Translated]†
スポンサーリンク
概要
- 論文の詳細を見る
A wet micro-feeder that utilizes ultrasonic wave force was designed and constructed to feed small particles into a container of wet particulate materials. The particle discharge characteristics from a nozzle with the inside diameter Dn were investigated using spherical and irregular particles of 80 to 180mm in diameter, dp.As a result, the critical ratio for particle blockage of the present feeder, (Dn/dp)c≒3.0, was found to be smaller than the values obtained previously (>4 ∼ 5) in the gravitational field for dry powders. The present feeder was able to achieve stable and continuous discharge of small amounts of particles. Multiple regression analysis proved that the discharge rate of particles, i.e. the number of particles discharged from the nozzle per unit of time, N̄, depended on Dn, dp, the applied voltage V0, and the median value of the particle shape index (surface roughness), y50, and that N̄ was proportional to Dn2.29. Therefore, N̄ could be controlled by V0 and Dn for given particles.† This report was originally printed in J. Soc. Powder Technology, Japan, 38(9), 617-625 (2001) in Japanese, before being translated into English by KONA Editorial Committee with the permission of the editorial committee of the Soc. Powder Technology, Japan.
- 公益財団法人 ホソカワ粉体工学振興財団の論文
公益財団法人 ホソカワ粉体工学振興財団 | 論文
- Flowsheet Simulation of Solids Processes
- Aggregate Structures and Solid-Liquid Separation Processes
- Generation and Sizing of Particles for Aerosol-Based Nanotechnology
- Powder Processing Issues for High Quality Advanced Ceramics
- Development of an Apparatus for Measuring Adhesive Force between Fine Particles [Translated]†