Bloom Filter Bootstrap: Privacy-Preserving Estimation of the Size of an Intersection
スポンサーリンク
概要
- 論文の詳細を見る
This paper proposes a new privacy-preserving scheme for estimating the size of the intersection of two given secret subsets. Given the inner product of two Bloom filters (BFs) of the given sets, the proposed scheme applies Bayesian estimation under an assumption of beta distribution for an a priori probability of the size to be estimated. The BF retains the communication complexity and the Bayesian estimation improves the estimation accuracy. A possible application of the proposed protocol is an epidemiological datasets regarding two attributes, Helicobacter pylori infection and stomach cancer. Assuming information related to Helicobacter Pylori infection and stomach cancer are separately collected, the protocol demonstrates that a χ2-test can be performed without disclosing the contents of the two confidential databases.
- 一般社団法人 情報処理学会の論文
一般社団法人 情報処理学会 | 論文
- Interest Point Detection Based on Stochastically Derived Stability
- Efficient Algorithms for Extracting Pareto-optimal Hardware Configurations in DEPS Framework
- Verification of Substitution Theorem Using HOL (プログラミング Vol.5 No.2)
- Programmable Architectures and Design Methods for Two-Variable Numeric Function Generators
- An Exact Estimation Algorithm of Error Propagation Probability for Sequential Circuits