Principal Components Regression by Using Generalized Principal Components Analysis
スポンサーリンク
概要
- 論文の詳細を見る
Principal components analysis (PCA) is one method for reducing the dimension of the explanatory variables, although the principal components are derived by using all the explanatory variables. Several authors have proposed a modified PCA (MPCA), which is based on using only selected explanatory variables in order to obtain the principal components (see e.g., Jolliffie (1972, 1986), Robert and Escoufier (1976), Tanaka and Mori (1997)). However, MPCA uses all of the selected explanatory variables to obtain the principal components. There may, therefore, be extra variables for some of the principal components. Hence, in the present paper, we propose a generalized PCA (GPCA) by extending the partitioning of the explanatory variables. In this paper, we estimate the unknown vector in the linear regression model based on the result of a GPCA. We also propose some improvements in the method to reduce the computational cost.
- 日本統計学会の論文
日本統計学会 | 論文
- 高次元多変量分析におけるパーミュテーションテスト(日本統計学会75周年記念特集(II))
- E-2 Wishart行列の固有ベクトルに関するパーミュテーション検定について
- D-1 相関係数に関するいくつかの検定問題について(多変量解析(1))(日本統計学会第69回大会記録)
- A-1 ベイズ情報量基準のある適用における妥当性(日本統計学会第67回大会記録 : 統計一般理論(3)ベイズ統計学)
- 教育・学習支援のためのデータ指向統計解析環境(統計教育)