Multiscale Hot-working Simulations Using Multi-phase-field and Finite Element Dynamic Recrystallization Model
スポンサーリンク
概要
- 論文の詳細を見る
In this study, we simulated non-uniform compression of a cylinder under various temperatures and deformation rates using a multi-phase-field and finite element dynamic recrystallization (MPFFE-DRX) model, which couples the multi-phase-field dynamic recrystallization (MPF-DRX) model with a large-deformation elastic-plastic finite element (FE) method using J2 flow theory for DRX microstructure evolution and macroscopic mechanical behavior, respectively. Detailed examination of the results confirmed that microstructure evolution and macroscopic mechanical behavior were accurately coupled over a wide range of temperature and deformation rate conditions. We also concluded that the MPFFE-DRX model can be used with a wide variety of temperatures and deformation rates.
- The Iron and Steel Institute of Japanの論文
The Iron and Steel Institute of Japan | 論文
- The Evolution of Precipitates in Nb-Ti Microalloyed Steels during Solidification and Post-solidification Cooling
- Short Contribution to the Study of the Washing Effect in Electromagnetic Stirrers for Continuous Casting
- Nitrogen Bearing Martensitic Stainless Steels : Microstructure and Properties
- A Two-dimensional Finite Element Thermomechanical Approach to a Global Stress-Strain Analysis of Steel Continuous Casting
- Transformation Behavior and Microstructures in Ultra-low Carbon Steels