Space Station Long-Duration Orbit Design using a Two-Level Optimization Approach
スポンサーリンク
概要
- 論文の詳細を見る
Space station orbit design missions are characterized by a long-duration and multi-step decision process, which makes its optimization design very complicated. An integrated nonlinear programming (NLP) model is developed by considering the interaction effects of different flight segments of a space station. A two-level optimization approach is proposed to optimize the total propellant consumption while satisfying different constraints. The up-level problem employs the orbital altitudes of each flight segment as design variables, and adopts the simplex method to search for the optimal solutions; the low-level problem employs the maneuver impulses and times within each flight segment as design variables, and the objective function is calculated by combining approximate an analytical method and a shooting iteration method. The proposed approach is evaluated in two test cases of a six-month orbit mission and a nine-month orbit mission. The results show that the proposed approach can effectively optimize the space station long-duration orbit design problem, and can save considerable propellant by 60–70% compared with previously proposed space station orbital strategies.
- THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCESの論文
THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES | 論文
- Study on Ignition and Electron Emission Characteristics of Inductively Coupled Plasma Cathode
- Research and Development of a Debris Removal Method Using Interaction between Space and Electrode with Applied Voltage
- Disaster Monitoring Using ALOS/PALSAR Data
- Design and Experimental Validation of Inter-Satellite Link System for Formation Flight SCOPE Mission
- Magnetic Inflation of Magnetic Plasma Sail by One Component Plasma Simulation