Numerical Simulation of Mechanical Sensors Using Conducting Polymers
スポンサーリンク
概要
- 論文の詳細を見る
The present study newly attempts the numerical simulation of the mechanical sensors using conducting polymers which generate electricity in the transient response to mechanical stimulation. The generated electric potential in the mechanical sensors is very much smaller than the supplied electric potential of the actuators with respect to the same deformation and structure. The present simulation procedure modifies and integrates the existing theories, and then the features of the transient behaviors, e.g. the non-invertible relation between electrical potential and deformation, relaxation and hysteresis, are numerically simulated. The governing equations of the physical phenomena in the sensation are coupled by embedding driving forces with physical parameters such as solid stress, fluid pressure, ion concentration and electric potential. The governing equations and fields of the physical parameters are spatially simplified as one-dimensional in the thickness direction of the sensors, because their variations over thickness dominantly determine the behavior of the sensor. In addition, the numerical procedure is efficiently simplified as possible as the transient behaviors are expressed. Next, the undrained Poisson's ratio is modified with a correction factor, and its significant effect on the transient behavior is investigated. Lastly, the procedure of the computational system for the sensors is introduced and fully coupled simulation is conducted. As a result, the present study reports the simulation results of the important physical quantities over the microscale thickness.
- 一般社団法人 日本機械学会の論文
著者
-
Toi Yutaka
Institute Of Industrial Science The University Of Tokyo
-
YOO Seongwon
Institute of Industrial Science, University of Tokyo
関連論文
- Elasto-Plastic Damage Analysis of Functionally Graded Materials Subjected to Thermal Shock and Thermal Cycle(Solid Mechanics)
- Application of the Degenerated Timoshenko Beam Element Using the Adaptively Shifted Integration Technique to Elastic-Plastic Analyses Considering Large Displacements : Rotations
- 9. Shifted Integration Technique and its Applications to the Finite Element Crush Analysis of Framed Structures
- 9. Numerical and Experimental Studies on the Crashworthiness of Structural Members
- Mesoscopic Simulation of Microcracking Behaviors of Brittle Polycrystalline Solids : 2nd Report, Study of Anisotropic Theory in Continuum Damage Mechanics
- Finite Element Collapse Analysis of Framed Structures by the Shifted Integration Technique
- Mesoscopic Simulation of Microcracking Behaviors of Brittle Polycrystalline Solids : 1st Report, Study of Isotropic Theory in Continuum Damage Mechanics
- Finite Element Modeling of Electrochemical-Poroelastic Behaviors of Conducting Polymer Films
- Enhanced Computational Modeling of Shape Memory Alloys and Its Applications to Honeycomb Analysis
- Improved Constitutive Modeling for Phase Transformation of Shape Memory Alloys
- Numerical Simulation of Mechanical Sensors Using Conducting Polymers
- Simulation of Self-Repair Process of Steels Damaged by Creep -Extension of Continuum Damage Mechanics to Self-Repair Process-:—Extension of Continuum Damage Mechanics to Self-Repair Process—
- Analysis of Thermal Fatigue Crack Propagation Based on Local Approach to Fracture