Nonlinear Adaptive Model Predictive Control via Immersion and Invariance Stabilizability
スポンサーリンク
概要
- 論文の詳細を見る
Adaptive control systems are designed to achieve the desired control performance when plant parameters are unknown or possibly slow-changing. In this paper, we propose an adaptive model predictive control (MPC) algorithm for a class of nonlinear input affine systems. The key idea is to combine the MPC algorithm with the adaptive Immersion and Invariance (I) control method. That is, MPC is used to calculate the input satisfying the assumption in the adaptive I control method and then the parameter update law in I depends on the state, estimated parameter, and input determined by the MPC algorithm. This strategy allows us to estimate the unknown parameters online and produce the control input at the same time. To modify the I method, we show a stability theorem for a linearly parameterized plant and then, numerical examples are given to demonstrate its effectiveness.
- システム制御情報学会の論文
著者
関連論文
- IFAC Workshop on Nonlinear Model Predictive Control for Fast Systems (NMPC-FS'06)(International Conference)
- 非線形Receding Horizon制御の計算方法について
- 「宇宙工学における力学と制御特集号」を企画して
- システム制御理論 : 20 世紀から 21 世紀へ(システム/制御/情報の最前線-研究交流会トピックス特集号)
- モデル予測制御
- オフラインでの特異値分解に基づく拘束条件付き非線形 Receding Horizon 制御の実時間アルゴリズム
- 外乱推定による連続時間モデル予測制御のオフセット補償
- Nonlinear Adaptive Model Predictive Control via Immersion and Invariance Stabilizability
- Nonlinear Adaptive Model Predictive Control via Immersion and Invariance Stabilizability