An Adaptive DAC Settling Waiting Time Optimized Ultra Low Voltage Asynchronous SAR ADC in 40nm CMOS
スポンサーリンク
概要
- 論文の詳細を見る
An ultra low power and low voltage successive-approximation-register (SAR) analog-to-digital converter (ADC) with timing optimized asynchronous clock generator is presented. By calibrating the delay amount of the clock generator, the DAC settling waiting time is adaptively optimized to counter the device mismatch. This technique improved the maximum sampling frequency by 40% keeping ENOB around 7-bit at 0.4V analog and 0.7V digital power supply voltage. The delay time dependency on power supply has small effect to the accuracy of conversion. Decreasing of supply voltage by 9% degrades ENOB only by 0.1-bit, and the proposed calibration can give delay margins for high voltage swing. The prototype ADC fabricated in 40nm CMOS process achieved figure of merit (FoM) of 8.75-fJ/conversion-step with 2.048MS/s at 0.6V analog and 0.7V digital power supply voltage. The ADC can operates from 50S/s to 8MS/s keeping ENOB over 7.5-bit.
著者
-
Kuroda Tadahiro
Keio Univ.
-
Ishikuro Hiroki
Keio Univ. Yokohama‐shi Jpn
-
SEKIMOTO Ryota
Keio University
-
SHIKATA Akira
Keio University
-
YOSHIOKA Kentaro
Keio University
関連論文
- Non-contact 10% efficient 36mW power delivery using on-chip inductor in 0.18-μm CMOS (電子部品・材料)
- Chip-to-Chip Power Delivery by Inductive Coupling with Ripple Canceling Scheme
- Human activity recognition from environmental background sounds for wireless sensor networks (特集 知識情報化社会を支えるシステム技術)
- Digital Rosetta Stone : A Sealed Permanent Memory with Inductive-Coupling Power and Data Link
- Measurement of Inductive Coupling in Wireless Superconnect
- An Outside-Rail Opamp Design Relaxing Low-Voltage Constraint on Future Scaled Transistors(Analog and Communications,Low-Power, High-Speed LSIs and Related Technologies)
- Split Capacitor DAC Mismatch Calibration in Successive Approximation ADC
- 18-GHz Clock Distribution Using a Coupled VCO Array(Analog and Communications,Low-Power, High-Speed LSIs and Related Technologies)
- Analysis of Inductive Coupling and Design of Rectifier Circuit for Inter-Chip Wireless Power Link
- Constant Magnetic Field Scaling in Inductive-Coupling Data Link
- Daisy Chain Transmitter for Power Reduction in Inductive-Coupling CMOS Link(Analog and Communications,Low-Power, High-Speed LSIs and Related Technologies)
- Constant Magnetic Field Scaling in Inductive-Coupling Data Link
- 60% Power Reduction in Inductive-Coupling Inter-Chip Link by Current-Sensing Technique
- A 1.2 Gbps Non-contact 3D-Stacked Inter-Chip Data Communications Technology (Interface and Interconnect Techniques, VLSI Design Technology in the Sub-100nm Era)
- System LSI : Challenges and Opportunities (System LSIs and Microprocessors, VLSI Design Technology in the Sub-100nm Era)
- A 4-Gbps Quasi-Millimeter-Wave Transmitter in 65nm CMOS and a Fast Carrier and Symbol Timing Recovery Scheme
- Special Section on Low-Power, High-Speed LSIs and Related Technologies
- A 9-bit 100-MS/s 1.46-mW Tri-Level SAR ADC in 65nm CMOS
- A Dynamic Offset Control Technique for Comparator Design in Scaled CMOS Technology
- A 60-GHz Injection-Locked Frequency Divider Using Multi-Order LC Oscillator Topology for Wide Locking Range
- A 9-bit 100MS/s SAR ADC with Digitally Assisted Background Calibration
- Human action recognition using wireless wearable in-ear microphone (特集 医療・ヘルスケアにおける工学技術の新展開)
- High-Frequency Precise Characterization of Intrinsic FinFET Channel
- High-Frequency Precise Characterization of Intrinsic FinFET Channel
- A 9-bit 100MS/s SAR ADC with Digitally Assisted Background Calibration
- Transmission Line Coupler Design and Mixer-Based Receiver for Dicode Partial Response Communications
- A 4-10bit, 0.4-1V Power Supply, Power Scalable Asynchronous SAR-ADC in 40nm-CMOS with Wide Supply Voltage Range SAR Controller
- An Adaptive DAC Settling Waiting Time Optimized Ultra Low Voltage Asynchronous SAR ADC in 40nm CMOS
- Symbol-Rate Clock Recovery for Integrating DFE Receivers