Finding a Hamiltonian Path in a Cube with Specified Turns is Hard
スポンサーリンク
概要
- 論文の詳細を見る
We prove the NP-completeness of finding a Hamiltonian path in an N × N × N cube graph with turns exactly at specified lengths along the path. This result establishes NP-completeness of Snake Cube puzzles: folding a chain of N3 unit cubes, joined at face centers (usually by a cord passing through all the cubes), into an N × N × N cube. Along the way, we prove a universality result that zig-zag chains (which must turn every unit) can fold into any polycube after 4 × 4 × 4 refinement, or into any Hamiltonian polycube after 2 × 2 × 2 refinement.
著者
-
DEMAINE Erik
MIT Computer Science and Artificial Intelligence Laboratory
-
Lynch Jayson
MIT Computer Science and Artificial Intelligence Laboratory
-
Demaine Martin
MIT Computer Science and Artificial Intelligence Laboratory
-
Abel Zachary
MIT Department of Mathematics
-
Eisenstat Sarah
MIT Computer Science and Artificial Intelligence Laboratory
-
Schardl Tao
MIT Computer Science and Artificial Intelligence Laboratory
関連論文
- リスト辺彩色の再構成問題
- 需要点と供給点があるグラフの分割問題の近似可能性
- 再構成問題の計算複雑さ
- A-025 Finding Reconfigurations between List Edge-Colorings of a Graph
- 部分集合和遷移問題の多項式時間近似スキーム
- Finding a Hamiltonian Path in a Cube with Specified Turns is Hard
- Computational Complexity of Piano-Hinged Dissections