Metabolomic and Transcriptomic Analysis for Rate-Limiting Metabolic Steps in Xylose Utilization by Recombinant Candida utilis
スポンサーリンク
概要
- 論文の詳細を見る
We have reported that a recombinant Candida utilis strain expressing a Candida shehatae xylose reductase K275R/N277D, a C. shehatae xylitol dehydrogenase, and xylulokinase from Pichia stipitis produced ethanol from xylose, but its productivity was low. In the present study, metabolomic (CE-TOF MS) and transcriptomic (microarray) analyses were performed to characterize xylose metabolism by engineered C. utilis and to identify key genetic changes contributing to efficient xylose utilization. The metabolomic analysis revealed that the xylose-fermenting strain accumulated more pentose phosphate pathway intermediates, more NADH, and more glycolytic intermediates upstream of glyceraldehyde 3-phosphate than the wild-type. Transcriptomic analysis of the strain grown on xylose indicated a significant increase in expression of the genes encoding tricarboxylic acid cycle enzymes, respiratory enzymes, and enzymes involved in ethanol oxidation. To decrease the NADH/NAD+ ratio and increase the ethanol yield of the fermentation of xylose, ADH1 encoding NADH-dependent alcohol dehydrogenase was overexpressed. The resulting strain exhibited a 17% increase in ethanol production and a 22% decrease in xylitol accumulation relative to control.
著者
-
Yokoyama Aki
Central Laboratories For Frontier Technology Kirin Holdings Co. Ltd.
-
Yoshida Satoshi
Central Laboratories For Frontier Technology Kirin Holdings Co. Ltd.
-
Tamakawa Hideyuki
Central Laboratories For Frontier Technology Kirin Holdings Co. Ltd.
-
Ikushima Shigehito
Central Labo Ratories For Frontier Technology Kirin Holdings Company Ltd.
-
TOMITA Yasuyuki
Central Laboratories for Key Technologies, KIRIN Company, Ltd.
-
KONOEDA Yuki
Central Laboratories for Key Technologies, KIRIN Company, Ltd.
-
TAMAKAWA Hideyuki
Central Laboratories for Key Technologies, KIRIN Company, Ltd.
関連論文
- Identification and characterization of genes involved in glutathione production in yeast(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Identification and Application of Novel Autonomously Replicating Sequences (ARSs) for Promoter-Cloning and Co-Transformation in Candida utilis
- Sugar induces death of the bottom fermenting yeast Saccharomyces pastorianus(BREWING AND FOOD TECHNOLOGY)
- Genetic Engineering of Candida utilis Yeast for Efficient Production of L-Lactic Acid
- Efficient Gene Disruption in the High-Ploidy Yeast Candida utilis Using the Cre-loxP System
- Ethanol Production from Xylose by a Recombinant Candida utilis Strain Expressing Protein-Engineered Xylose Reductase and Xylitol Dehydrogenase
- Efficient production of L-lactic acid from xylose by a recombinant Candida utilis strain(MICROBIAL PHYSIOLOGY AND BIOTECHNOLOGY)
- Identification and characterization of genes related to the production of organic acids in yeast(GENETICS, MOLECULAR BIOLOGY, AND GENE ENGINEERING)
- Multi-locus genotyping of bottom fermenting yeasts by single nucleotide polymorphisms indicative of brewing characteristics(BREWING AND FOOD TECHNOLOGY)
- Multi-locus genotyping of bottom fermenting yeasts by single nucleotide polymorphisms indicative of brewing characteristics
- Metabolomic and Transcriptomic Analysis for Rate-Limiting Metabolic Steps in Xylose Utilization by Recombinant Candida utilis