Mapping Optimization of Affine Loop Nests for Reconfigurable Computing Architecture
スポンサーリンク
概要
- 論文の詳細を見る
Reconfigurable computing system is a class of parallel architecture with the ability of computing in hardware to increase performance, while remaining much of flexibility of a software solution. This architecture is particularly suitable for running regular and compute-intensive tasks, nevertheless, most compute-intensive tasks spend most of their running time in nested loops. Polyhedron model is a powerful tool to give a reasonable transformation on such nested loops. In this paper, a number of issues are addressed towards the goal of optimization of affine loop nests for reconfigurable cell array (RCA), such as approach to make the most use of processing elements (PE) while minimizing the communication volume by loop transformation in polyhedron model, determination of tilling form by the intra-statement dependence analysis and determination of tilling size by the tilling form and the RCA size. Experimental results on a number of kernels demonstrate the effectiveness of the mapping optimization approaches developed. Compared with DFG-based optimization approach, the execution performances of 1-d jacobi and matrix multiplication are improved by 28% and 48.47%. Lastly, the run-time complexity is acceptable for the practical cases.
著者
-
Yin Shouyi
Institute Of Microelectronics Tsinghua University
-
Liu Leibo
Institute Of Microelectronics Tsinghua University
-
Yin Chongyong
Institute Of Microelectronics Tsinghua University
-
Wei Shaojun
Institute Of Microelectronics Tsinghua University
-
YIN Shouyi
Institute of Microelectronics, Tsinghua University
-
LIU Dajiang
Institute of Microelectronics, Tsinghua University
関連論文
- Compiler Framework for Reconfigurable Computing Architecture
- A Cycle-Accurate Simulator for a Reconfigurable Multi-Media System
- Parallelization of Computing-Intensive Tasks of the H.264 High Profile Decoding Algorithm on a Reconfigurable Multimedia System
- CropNET : A Wireless Multimedia Sensor Network for Agricultural Monitoring
- Configuration Context Reduction for Coarse-Grained Reconfigurable Architecture
- Hybrid Wired/Wireless On-Chip Network Design for Application-Specific SoC
- Multi-Battery Scheduling for Battery-Powered DVS Systems
- Reconfiguration Process Optimization of Dynamically Coarse Grain Reconfigurable Architecture for Multimedia Applications
- Mapping Optimization of Affine Loop Nests for Reconfigurable Computing Architecture
- Hardware Software Co-design of H.264 Baseline Encoder on Coarse-Grained Dynamically Reconfigurable Computing System-on-Chip
- Affine Transformations for Communication and Reconfiguration Optimization of Mapping Loop Nests on CGRAs
- Parallelization of Computing-Intensive Tasks of SIFT Algorithm on a Reconfigurable Architecture System
- An Inductive-Coupling Interconnected Application-Specific 3D NoC Design
- Battery-Aware Task Mapping for Coarse-Grained Reconfigurable Architecture
- Concurrent Detection and Recognition of Individual Object Based on Colour and p-SIFT Features
- Hardware Software Co-design of H.264 Baseline Encoder on Coarse-Grained Dynamically Reconfigurable Computing System-on-Chip
- Concurrent Detection and Recognition of Individual Object Based on Colour and p-SIFT Features