Improved acoustical analysis method using the normal derivative form of a Helmholtz boundary integral equation
スポンサーリンク
概要
- 論文の詳細を見る
Nonuniqueness problem suffered by the normal derivative form (NDF) of a Helmholtz boundary integral equation (HBIE) applied to external Neumann problems is investigated. The NDF equation is useful in solving sound field around open surfaces, but it suffers from nonuniqueness when it is used for solving surface velocity potential at eigenvalues of corresponding internal Neumann problems of a closed surface. We have found that Schenck's CHIEF method reduces the error in the exterior sound field for some eigenvalues of the NDF equation. But the velocity potential on the surface is nonunique by the CHIEF method. Results show that, at internal eigenvalues, the NDF equation is not suitable for calculating sound field in the exterior domain. Whereas, Burton and Miller's equation (BM equation) is effective in estimating the unique surface velocity potential and gives accurate results for both the internal and external sound fields of a closed surface. In this research, a modified NDF equation (MNDF) is developed as a combination of NDF and BM equations. This MNDF is expected to give unique solutions for all wavenumbers for the sound field around open and closed surfaces combined.
- 一般社団法人 日本音響学会の論文
一般社団法人 日本音響学会 | 論文
- How large is the individual difference in hearing sensitivity?: Establishment of ISO 28961 on the statistical distribution of hearing thresholds of otologically normal young persons
- Applying generation process model constraint to fundamental frequency contours generated by hidden-Markov-model-based speech synthesis
- Vocal cord vibration in the production of consonants. Observation by means of high-speed digital imaging using a fiberscope.:Observation by means of high-speed digital imaging using a fiberscope
- The early reflections of the impulse response in an auditorium.
- Multiple reflections between rigid plane panels.