Intensity of X-ray Diffraction by a One-dimensionally Disordered Crystal:(1) General Derivation
スポンサーリンク
概要
- 論文の詳細を見る
The intensity formula for the X-ray diffraction by a one-dimensionally disordered crystal was obtained using the matrix-method of Hendricks and Teller for the case of a finite number <I>N</I> of layers (eqs. (15), (16) ) . Deviding (15) by <I>N</I> and putting N→∞, the agreement is obtained between (15) and eq. [29] in their paper, their ∅ <SUP>(s)</SUP> and V<SUP>(s)</SUP> being correlated with our ∅<SUB>s</SUB>and V<SUB>s</SUB> by (20) .The general formula for S=0 (S is the degree of influence of the preceding layers on P<SUB>st</SUB>) is (25) or (26) . Using the relation (27), the term with <I>N</I> in (26) is equal to [20] of Hendricks & Teller. For the special value of ∅<SUB>s</SUB>, of (28) the denominators in (26) become 0, in which case (25) becomes (29) and, while only the first term with N in (26) becomes (30) in the limiting value of γ→Γ and is generally very weak, the limiting value of the whole (26) becomes equal to (29) . In case S=0 and ∅<SUB>s</SUB>=∅ (26) becomes (32) . In case S=0 and <I>V<SUB>s</SUB></I>=<I>V</I>, we obtain (36) and (37) . The general formula for S=1 is (15) or (16) itself, which can be, if wanted, separated into two parts, one due to S=0 and the other to S=1, by using (42) or (43) . In case S=1 and ∅<SUB>s</SUB>=∅ (15) becomes (49), which turns out (53) for R=2. For a one-dimensional AB-alloy (53) becomes (56) which is equal to (57) in the complete disorder and to (58) or (59) in the perfect order. The agreement can be obtained between (15) and (38) used by Wilson <SUP>2)</SUP> and Jagodzinski <SUP>3)</SUP> by introducing (40) . S<SUB>j</SUB>S<SUP>∗</SUP><SUB>j+n</SUB>given by them for S=1, (60), can be obtained from (40) by taking the special value of (61) for P, which is available only for the close-packed structure. The difference equations for <I>P<SUB>n</SUB></I> for, S=2 and 3 used by the mwill be obtained from a set of 2<SUP><I>s</I>-2</SUP>simultaneous difference equations for S=S, which will be described in the third report. In conclusion, in order to examine only the general feature of the diffuse scattering we are satisfied only with the term with <I>N</I> in (16) but we should consider the higher term when we examine for example, the relation between the diffuse and Laue scatterings, the crystal with slight irregularities, the intensity near the special point ( (28) ), or specially the crystal with small <I>N</I> (Fig.1.) .
- 日本結晶学会の論文
著者
関連論文
- 3a-A-10 Si-As-Te系非晶質半導体の構造解析
- 4a-O-12 Growth fault と Deformation fault
- 4a-O-11 Stacking fault probabilityを求める実際的手続・例Cu_3Al
- 大学から見た高校物理
- ZnS結晶の相転移と晶癖
- 5p-E-5 大学から見た高校物理
- ZnS結晶の多形成長 : 化合物半導体
- 固相成長
- 5a-B-9 一次元不整格子によるX線散乱強度式におけるQ行列の一般化
- 4a-P-10 一次元不正格子による回折強度の有用な式
- 4a-P-7 δ(Mn-Al)相のdisordered structure. : 二層混合の場合
- 4p-H-3 回折現象より見た非晶質の構造
- 3a-E-14 ZnS の新しいポリタイプ : Patterson 法の適用
- 3a-E-4 MとM+1層間の disorder による,反位相区域構造の非整数半周期M^^〜のとり扱い方
- 3a-E-3 NaNO_2 の反強誘電相における sinusoidal model と反位相区域モデルの比較
- 9a-D-2 反位相区域構造における藤原のstep function (II) : 適用上の注意
- 9a-D-1 反位相区域構造における藤原のstep function (I) : 強度式
- 3p-E-10 Displacement stacking structureにおけるPatterson法とlayer suquence symbol
- 1a-TG-6 反位相区域の解析(2)Patterson関数とM-series letterとの関係
- 1a-TG-5 反位相区域の解析(1)unitary intensityとPatterson関数
- 1a-TG-4 Stacking Disorderに対するパターソン法
- 2a-GD-11 ZnSの気相成長とポリタイプ
- 接待委員
- 結晶学研究所 (仮称) の構想
- 積層欠陥に関する回折理論 (II)
- 積層欠陥に関する回折理論 (I)
- 大学側よりみた入学者の物理学的素養
- 5p-R-4 大学側より見た入学者の物理学的素養
- タイプライターで作った2次元回折格子による回折現象の観測 : 付 X線回折と物質の構造
- タイトル無し
- タイトル無し
- Intensity of X-ray Diffraction by a One-dimensionally Disordered Crystal:(1) General Derivation
- タイトル無し