Mechanics of Fiber Entanglements:Part 1 : Introducing F. Buechés Theory to Random Slivers
スポンサーリンク
概要
- 論文の詳細を見る
A sliver is similar in structure to a network in a high polymer concentrated solution. This article seeks to introducing F. Buches theory of the entangled linear polymer to entangled fibers in a random sliver in this paper.<BR>The number of entanglements of a fiber in a random sliver can be given by apllying 6-model segments to an entanglement:<BR>ε=(Aρ⁄M)l<SUP>2</SUP>a[sq<SUP>2</SUP>(1−s)]<SUP>2</SUP>[1−(5⁄N)]<BR>where<BR>ε : number of entanglements of a fiber in a fiber assembly<BR>A: number of fibers in a fiber assembly<BR>ρ': apparent density of a fiber assembly<BR>M: weight of a fiber assembly<BR>l: fiber length<BR>N: numbers of selgments in fiber<BR>a: length of one side of a loop at an entanglement<BR>s, q: probabilities of orientation of fiber segments.<BR>Even if the pressure on the sliver increases, the number of entanglements of a fiber remains almost constant, but the number of constants of a fiber increases.
- 社団法人 日本繊維機械学会の論文
著者
関連論文
- On the Crease Recovery of the Fabrics:Part 3 : When Warp and Filling Have Different Twist Directions
- Mechanics of Fiber Entanglements:Part 1 : Introducing F. Buechés Theory to Random Slivers