Dependence of Strength of Specimen on its Length
スポンサーリンク
概要
- 論文の詳細を見る
There are several theories on the dependence of the strength of a specimen on its length. A return probability and an extreme statistic based on the distribution of specimen length zero are used in this article to explain the length effect. <BR>The following equation estimates the strength distribution for a given specimen length, l.<BR>1-F<SUB>i</SUB>(y)=[1-F<SUB>0</SUB>(y)]exp[f<SUB>0</SUB>(y) ⁄ f<SUB>0</SUB>(M<SUB>0</SUB>) ⁄ 1-F<SUB>0</SUB>(y) l ⁄ 2λ] <BR>where F<SUB>i</SUB>(y) and F<SUB>0</SUB>(y) are the distribution functions for lengths l and zero, respectively. f<SUB>i</SUB>(y) are the probability density function for specimen length l. f<SUB>0</SUB>(y) and f<SUB>0</SUB>(M<SUB>0</SUB>)are the probability density functions at strengths y and M<SUB>0</SUB> (median of strength), respectively, for specimen length zero λ is the mean return interval of M<SUB>0</SUB>.<BR>The distribution f<SUB>0</SUB>(y) and the mean return interval λ can be estimated from actual data on a specimen of definite length.<BR>The following values of λ for the tensile strength are calculated: <BR>Cotton yarn (20 s), 84 cm <BR>Tetron filament yarn (75-36-12-s), 61 cm <BR>Nylon filament yarn (70-24-20-600), 30 cm
- 社団法人 日本繊維機械学会の論文