Models of Deforestation with Spatial Dependency by Human Population Interactions
スポンサーリンク
概要
- 論文の詳細を見る
Deforestation is a result of complex causality chains in most cases. But identification of limited number of deforestation factors shall provide comprehensive and general understanding of the vital phenomenon at a broad scale, as well as projection to the future. Two factors-human population size (N) and relief energy (R: difference of minimum altitude from the maximum in a sampled area)-were found to give sufficient elucidation of deforestation by a nonlinear regression model, whose functional forms were suggested by step functions fitted to one-kilometer square grid-cell data in Hiroshima Prefecture, Japan (n=8697). Thus let forest areal rate on the same cell areas be F≡F(N, R), 0≤F≤1.<BR>We examine various nonlinear regression models having error terms with spatial dependency through the real data. Then, a model with five parameters was selected by AIC.<BR>It is expected that the parameters of a developing country and those of a developed country are different. Hence, the parameters should be useful as effective environment indicators.
著者
関連論文
- ビジネス利用における空間検索を対象としたORDBMSベンチマークテストの試作
- パターン識別に対する斜交軸と変数選択手法の導入
- あいまい性を考慮した決定木による土地被覆分類
- 超高速ATM LANの構築法と次世代ユーザーインタフェースに関する研究
- 事務処理支援システムの要求事項の検討とプロトタイプの構築
- カテゴリの平均値が隣接した場合の斜交軸の効果
- 人口増加に伴う森林減少の空間モデル
- 空間相関付正規分布発生方法について
- VALIDITY OF THE BOX-COX TRANSFORMATION OF THE EXPONENTIAL DISPERSION MODEL WITH POWER VARIANCE FUNCTION
- Exponential Dispersion Model と巾変換
- アプリケーション・パッケージSQL/MM標準化動向
- 森林被覆率の非線形回帰モデリング (特集 時空間統計解析 : 新たなる分野横断的展開)
- Models of Deforestation with Spatial Dependency by Human Population Interactions