ASYMPTOTIC ESTIMATES FOR MODULI OF EXTREMAL RINGS
スポンサーリンク
概要
- 論文の詳細を見る
For n ≥ 2 and 0 < a < 1 let {R_n}(a) denote the extremal ring domain consisting of the unit ball in n-space minus the closed slit left[ { - a, a} \right] along the {x_1}-axis. Significant lower and upper limits as n tends to ∞ are obtained for the expressions\bmod {R_n}(a) - n + {1 \over 2}log nand{n<SUP>1/2 - n</SUP>}\bmod {R_n}{(a)^n}, where mod denotes the conformal modulus.
- 東北大学大学院理学研究科数学専攻の論文
著者
関連論文
- The transfinite moduli of condensers in space
- ESTIMATES FOR THE ASYMPTOTIC ORDER OF A GRÖTZSCH RING CONSTANT
- ASYMPTOTIC ESTIMATES FOR MODULI OF EXTREMAL RINGS