Analysis on the Sequential Behavior of Malware Attacks
スポンサーリンク
概要
- 論文の詳細を見る
Overcoming the highly organized and coordinated malware threats by botnets on the Internet is becoming increasingly difficult. A honeypot is a powerful tool for observing and catching malware and virulent activity in Internet traffic. Because botnets use systematic attack methods, the sequences of malware downloaded by honeypots have particular forms of coordinated pattern. This paper aims to discover new frequent sequential attack patterns in malware automatically. One problem is the difficulty in identifying particular patterns from full yearlong logs because the dataset is too large for individual investigations. This paper proposes the use of a data-mining algorithm to overcome this problem. We implement the PrefixSpan algorithm to analyze malware-attack logs and then show some experimental results. Analysis of these results indicates that botnet attacks can be characterized either by the download times or by the source addresses of the bots. Finally, we use entropy analysis to reveal how frequent sequential patterns are involved in coordinated attacks.
論文 | ランダム
- 職域において「やるべきこと」と「できないこと」 (特集 職場でのメンタルヘルス)
- 職場でのメンタルヘルス活動を「叱る」 (臨床現場に学ぶ叱り方) -- (精神科の現場から)
- II. 産業保健領域におけるメンタルヘルス活動(特別講演,第105回日本心身医学会関東地方会演題抄録)
- 理想論で終わらない職場のメンタルヘルス活動とは--産業保健スタッフに向けて
- 精神障害者スポーツの現状と課題 (第1回日本スポーツ精神医学会特集) -- (シンポジウム こころとスポーツ)