Cold Plasma中の非線型強制振動
スポンサーリンク
概要
- 論文の詳細を見る
Nonlinear forced oscillations in a cold electron plasma are treated in Lagrangean form, and exact equations for the density and the velocity are derived. In the absence of the forcing term, we have Konyukov's result but not Amer's and Amer's error is shown. According to the Coddington and Levinson's method, the existence conditions of the periodic solut on of these equations are given.<BR>As a typical example of the forcing term, the case of F=-m (νv+βv<SUP>3</SUP>) +C sin ωt is treated and for β=0, we find that the density tend to n<SUB>0</SUB> as, t→∞, while in the velocity there remains only the forced oscillation.Also, for β≠0we have essintially the same result, and the density converges to n<SUB>0</SUB> and the periodic solution of the velocity corres-ponds to the forced oscillation.
- 社団法人 プラズマ・核融合学会の論文
著者
関連論文
- 外部磁場に斜め伝播するプラズマ波 : プラズマ物理
- 1a-D-4 プラズマ波動の安定性の数値計算II
- 外部磁場に斜め伝播するプラズマ波
- 磁場中のプラズマ振動の安定条件
- Cold Plasma中の非線型強制振動
- 非線型定常プラズマ波
- 磁界中のプラズマ振動
- 磁場中プラズマの横波