Generation of Target-Selective Drug Candidate Structures Using Molecular Evolutionary Algorithmwith SVM Classifiers
スポンサーリンク
概要
- 論文の詳細を見る
In a previous study, we reported a molecular evolutionary approach for generating chemical structures. It involved a computational experiment for reproducing a target chemical structure from a seed structure by using a fitness based on the structural similarity. In this paper, we describe a method of molecular evolutionary computation using support vector machine (SVM) classifiers for generating drug-like candidate structures with specific activity. The method is based on evolutionary operations such as crossover, mutation, and selections similar to the previous study; however, the fitness of each structure was evaluated using the SVM classifiers. We performed molecular evolutionary computation using the SVM classifiers in order to generate candidate chemical structures for antihypertensive drugs of two different therapeutic classes of angiotensin converting enzyme (ACE) and neutral endopeptidase (NEP). A computer experiment to generate the ACE-selective candidates showed that evolutionary computation could favorably increase the fitness for ACE as the alternation of generations proceeded. Another computer experiment for the NEP-selective candidates also yielded a favorable result.
論文 | ランダム
- 過冷オーステナイト状態の軸受鋼切削加工において工具寿命に影響を及ぼす諸要因
- 過冷オーステナイト状態の軸受鋼切削加工のための熱間鍛造からの連続熱処理
- 過冷オーステナイト軸受鋼の切削加工における寸法制御
- 658 オースカッティングにおける切りくず生成の周期性(油井管・被削性・条鋼・線材, 性質, 日本鉄鋼協会第 102 回(秋季)講演大会)
- 農業教授人の鹿児島農村に於ける貢献 : 熊本県より鹿児島県への