Remarks on Nonlinear Smoothing under Randomization for the Periodic KdV and the Cubic Szegö Equation
スポンサーリンク
概要
- 論文の詳細を見る
We consider Cauchy problems of some dispersive PDEs with random initial data. In particular, we construct local-in-time solutions to the mean-zero periodic KdV almost surely for the initial data in the support of the mean-zero Gaussian measures on Hs(T), s > s0 where s0 = –11/6 + $\sqrt{61}$/6 ≈ –0.5316 < –1/2, by exhibiting nonlinear smoothing under randomization on the second iteration of the Duhamel formulation. We also show that there is no nonlinear smoothing for the dispersionless cubic Szegö equation under randomization of initial data.
論文 | ランダム
- P-198 膵頭部癌に対するPpPDの適用について
- O-362 膵嚢胞性腫瘍の治療方針 : 粘液産生嚢胞性膵腫瘍について
- O-175 肝胆膵外科領域における超音波3D画像の最先端
- VS4-1 門脈血管内超音波検査による膵外神経叢浸潤診断とSMA周囲神経叢郭清
- WS1a-4 膵癌および肝癌における遺伝子診断と問題点