Multiscale Bagging and Its Applications
スポンサーリンク
概要
- 論文の詳細を見る
We propose multiscale bagging as a modification of the bagging procedure. In ordinary bagging, the bootstrap resampling is used for generating bootstrap samples. We replace it with the multiscale bootstrap algorithm. In multiscale bagging, the sample size m of bootstrap samples may be altered from the sample size n of learning dataset. For assessing the output of a classifier, we compute bootstrap probability of class label; the frequency of observing a specified class label in the outputs of classifiers learned from bootstrap samples. A scaling-law of bootstrap probability with respect to σ2=n/m has been developed in connection with the geometrical theory. We consider two different ways for using multiscale bagging of classifiers. The first usage is to construct a confidence set of class labels, instead of a single label. The second usage is to find inputs close to decision boundaries in the context of query by bagging for active learning. It turned out, interestingly, that an appropriate choice of m is m=-n, i.e., σ2=-1, for the first usage, and m=∞ , i.e., σ2=0, for the second usage.
論文 | ランダム
- 小売施設立地性向の時系列的分析 : 茨城県パネルデータ(1970〜91)による分析
- 魅力と引力のアナロジー(建築研究におけるアナロジー)(建築におけるアナロジーは,もの造りの論理たりえるか)
- モデル分析の建築計画への応用(研究展望)
- 15-13 ケイ酸供給量の異なる水田におけるケイ酸施用がイネのケイ酸吸収量に及ぼす影響(15.水田土壌肥よく度,2009年度京都大会)
- P16-6 ソルガムの多面的機能の利用(ポスター紹介,16.畑地土壌肥よく度,2008年度愛知大会)