Multiscale Bagging and Its Applications
スポンサーリンク
概要
- 論文の詳細を見る
We propose multiscale bagging as a modification of the bagging procedure. In ordinary bagging, the bootstrap resampling is used for generating bootstrap samples. We replace it with the multiscale bootstrap algorithm. In multiscale bagging, the sample size m of bootstrap samples may be altered from the sample size n of learning dataset. For assessing the output of a classifier, we compute bootstrap probability of class label; the frequency of observing a specified class label in the outputs of classifiers learned from bootstrap samples. A scaling-law of bootstrap probability with respect to σ2=n/m has been developed in connection with the geometrical theory. We consider two different ways for using multiscale bagging of classifiers. The first usage is to construct a confidence set of class labels, instead of a single label. The second usage is to find inputs close to decision boundaries in the context of query by bagging for active learning. It turned out, interestingly, that an appropriate choice of m is m=-n, i.e., σ2=-1, for the first usage, and m=∞ , i.e., σ2=0, for the second usage.
論文 | ランダム
- 農村のリクリエーション的集団に関する実証的研究--研究計画--特集・体育研究の動向
- 輸血部のない病院における自己血輸血法への対応 (整形外科領域における自己血輸血)
- Bone Marrow Cell Differentiation Regulated by Gel-embedded Osteocytes(Cellular & Tissue Engineering)
- 抗菌と銅 (特集 用途拡がる抗菌・防かび技術)
- ユダヤ人という存在と国民国家 (シンポジウム:「国民国家論」・「国民の物語」を考える)