HyperLS for Parameter Estimation in Geometric Fitting
スポンサーリンク
概要
- 論文の詳細を見る
We present a general framework of a special type of least squares (LS) estimator, which we call “HyperLS, ” for parameter estimation that frequently arises in computer vision applications. It minimizes the algebraic distance under a special scale normalization, which is derived by a detailed error analysis in such a way that statistical bias is removed up to second order noise terms. We discuss in detail many theoretical issues involved in its derivation. By numerical experiments, we show that HyperLS is far superior to the standard LS and comparable in accuracy to maximum likelihood (ML), which is known to produce highly accurate results but may fail to converge if poorly initialized. We conclude that HyperLS is a perfect candidate for ML initialization.
論文 | ランダム
- 卒前・卒後教育 小児科初期・後期研修教育へのシミュレーターの応用法
- 特別記事 東京都の「主幹」(仮称)設置について--第3の管理職創設へ
- 2. 脾臓摘出後も高ビリルビン血症が遷延している球状赤血球症の1例(第18回日本小児脾臓研究会)
- Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus.
- 脳外科領域の入院患者の喀痰から検出される Streptococcus agalactiae について