HyperLS for Parameter Estimation in Geometric Fitting
スポンサーリンク
概要
- 論文の詳細を見る
We present a general framework of a special type of least squares (LS) estimator, which we call “HyperLS, ” for parameter estimation that frequently arises in computer vision applications. It minimizes the algebraic distance under a special scale normalization, which is derived by a detailed error analysis in such a way that statistical bias is removed up to second order noise terms. We discuss in detail many theoretical issues involved in its derivation. By numerical experiments, we show that HyperLS is far superior to the standard LS and comparable in accuracy to maximum likelihood (ML), which is known to produce highly accurate results but may fail to converge if poorly initialized. We conclude that HyperLS is a perfect candidate for ML initialization.
論文 | ランダム
- 核なき世界への行脚(運動史への証言)
- 核軍縮交渉義務の規範構造 : NPT第6条と再検討会議における「合意」
- 平和教育実践 2005年NPT再検討会議参加報告--これからの核軍縮における市民社会と若者の役割
- 2005年NPT再検討会議と核軍縮
- 日本がリードする核軍縮・不拡散--NPT運用検討会議決裂を乗り越えて (特集 核とどう向き合うか--21世紀のNPT体制)