Pedestrian Detection with Sparse Depth Estimation
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we deal with the pedestrian detection task in outdoor scenes. Because of the complexity of such scenes, generally used gradient-feature-based detectors do not work well on them. We propose to use sparse 3D depth information as an additional cue to do the detection task, in order to achieve a fast improvement in performance. Our proposed method uses a probabilistic model to integrate image-feature-based classification with sparse depth estimation. Benefiting from the depth estimates, we map the prior distribution of humans actual height onto the image, and update the image-feature-based classification result probabilistically. We have two contributions in this paper: 1) a simplified graphical model which can efficiently integrate depth cue in detection; and 2) a sparse depth estimation method which could provide fast and reliable estimation of depth information. An experiment shows that our method provides a promising enhancement over baseline detector within minimal additional time.
論文 | ランダム
- 床用レジンに応用したガラス繊維強化樹脂の補強効果
- 遠心発射型研磨装置によるつや出し研磨が床用レジンの表面性状に及ぼす影響
- 312 形状記憶合金繊維を埋入した義歯床用レジン基複合材料の損傷修復後の形状変化
- スチームクリーナーが床用レジンの適合に与える影響
- シリコーンゴムリライニング材と床用材料との接着性