Pedestrian Detection with Sparse Depth Estimation
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we deal with the pedestrian detection task in outdoor scenes. Because of the complexity of such scenes, generally used gradient-feature-based detectors do not work well on them. We propose to use sparse 3D depth information as an additional cue to do the detection task, in order to achieve a fast improvement in performance. Our proposed method uses a probabilistic model to integrate image-feature-based classification with sparse depth estimation. Benefiting from the depth estimates, we map the prior distribution of humans actual height onto the image, and update the image-feature-based classification result probabilistically. We have two contributions in this paper: 1) a simplified graphical model which can efficiently integrate depth cue in detection; and 2) a sparse depth estimation method which could provide fast and reliable estimation of depth information. An experiment shows that our method provides a promising enhancement over baseline detector within minimal additional time.
論文 | ランダム
- PC鋼棒にプレストレスを導入した腰壁付きRC柱の耐震補強に関する実験的研究
- 地方公設試験研究機関における研究体制と包装技術関連研究について
- 267 PC鋼棒によるプレストレスを導入した腰壁付きRC柱の耐震補強実験(建築構造)
- 地域特性を有する甲州味噌の特性
- スモモ果実の品質保持及び利用に関する生化学的研究