Pedestrian Detection with Sparse Depth Estimation
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we deal with the pedestrian detection task in outdoor scenes. Because of the complexity of such scenes, generally used gradient-feature-based detectors do not work well on them. We propose to use sparse 3D depth information as an additional cue to do the detection task, in order to achieve a fast improvement in performance. Our proposed method uses a probabilistic model to integrate image-feature-based classification with sparse depth estimation. Benefiting from the depth estimates, we map the prior distribution of humans actual height onto the image, and update the image-feature-based classification result probabilistically. We have two contributions in this paper: 1) a simplified graphical model which can efficiently integrate depth cue in detection; and 2) a sparse depth estimation method which could provide fast and reliable estimation of depth information. An experiment shows that our method provides a promising enhancement over baseline detector within minimal additional time.
論文 | ランダム
- 近代的経営組織の理論とその考え方-5-
- 近代的経営組織の理論とその考え方-4-
- 近代的経営組織の理論とその考え方-3-
- 生涯学習ネットワークの可能性についての理論的検討 : ペトリネットによるモデル分析
- 生涯学習援助システムの検討 : 指導者ネットワークの可能性について