Class-Distance-Based Discriminant Analysis and Its Application to Supervised Automatic Age Estimation
スポンサーリンク
概要
- 論文の詳細を見る
We propose a novel method of supervised feature projection called class-distance-based discriminant analysis (CDDA), which is suitable for automatic age estimation (AAE) from facial images. Most methods of supervised feature projection, e.g., Fisher discriminant analysis (FDA) and local Fisher discriminant analysis (LFDA), focus on determining whether two samples belong to the same class (i.e., the same age in AAE) or not. Even if an estimated age is not consistent with the correct age in AAE systems, i.e., the AAE system induces error, smaller errors are better. To treat such characteristics in AAE, CDDA determines between-class separability according to the class distance (i.e., difference in ages); two samples with similar ages are imposed to be close and those with spaced ages are imposed to be far apart. Furthermore, we propose an extension of CDDA called local CDDA (LCDDA), which aims at handling multimodality in samples. Experimental results revealed that CDDA and LCDDA could extract more discriminative features than FDA and LFDA.
論文 | ランダム
- アルバータ大学における在外派遣研究報告
- 抵抗スポット溶接におけるナゲット形成に及ぼす諸因子の影響
- S1-07 小児外科疾患を有する極小・超低出生体重児の長期神経学的予後(低出生体重児に対する外科治療の長期予後,シンポジウムI,第48回日本小児外科学会学術集会)
- ラット中大脳動脈閉塞・再灌流モデルにおける抗HMGB1単クローン抗体の血液―脳関門の保護効果
- 小児がんの子どもたちへの教育支援システムの構築