総説-オフィオライトの起源とエンプレイスメント
スポンサーリンク
概要
- 論文の詳細を見る
A brief review of the study on ophiolite is given. 165 years have passed already since a first use of the term “ophiolite” by BRONGNIART (1813), but still have not yet obtained a broadly satisfying solution on its origin and emplacement. However, the rapidly increased data set during the last 15 years on both on-land ophiolite and oceanfloors clearly indicate the strong constraints on its origin and emplacement.<BR>The period during 1813-1927 was a time of description of ophiolite. BRONGNIART (1827) classified ophiolite into a group of igneous rocks, since then began a debate whether ophiolitic peridotite is igneous or the other in origin. SUESS (1909) had noticed that ophiolites appear characteristically in orogenic belts. It was STEINMANN (1927) who had first recognized a close association of peridotite, gabbro, diabase-spilite, and radiolarian chert suggesting a deep sea origin of ophiolite. The significance of his finding has never been looked back until the revolutional period of plate tectonics in the late 60s.<BR>The second period of 1927-1949 was the time of debate on igeneous origin. BOWEN and his coworkers insisted igneous origin based on experimental petrology for the ultramafic rocks in general. But if so, an abnormally high temperature ca. 1, 900°C was necessary to explain the occurrence of dunite. BENSON (1926) pointed out that if BOWENS idea is true, the country rocks of ophiolite must be subjected a high-temperature contact metamorphism, but not in the field. HESS (1939) has given a new idea of serpentinite magma to solve the problem, but its possibility had completely been disproved by the experiment of MgO-SiO<SUB>2</SUB>-H<SUB>2</SUB>O by BOWEN and TUTTLE (1949).<BR>The third period (1949-1959) began by a break-through idea of DE ROEVER (1957), who speculated that ophiolitic peridotite is a piece of mantle material, which was brought into an orogen by a tectonic process.<BR>The fourth period (1959-1973) started by BRUNN (1959) who compared ophiolite with the rocks in the Mid-Atlantic Ridge. This period (1959-1973) was the time of plate tectonics. During the early 60s the ocean-floor spreading theory was proposed by HESS and DIETZ, and both thought that the layer 3 is composed of serpentinite oreclogite. The year 1969 was a memorial year, when both MOORES and DAVIES distinguished cumulate peridotite from the underlying residue tectonite, the latter of which is a refractory mantle after the formation of oceanic crust by partial fusion of mantle peridotite. The best example of ophiolite was the Troodos massif in Cyprus, where the extensive-scale of parallel dike swarm develops indicating ocean-floor spreading. Thereafter an ophiolite boom has come out, and flood of papers appeared to regard ophiolite to be of mid-oceanic ridge in origin. However, several geologists have doubted mid-oceanic ridge origin by the facts of much thinner crust, more silicic volcanic composition, and frequent occurrence of phenocrystic augite in ophiolites. MIYASHIRO (1973) solved such problems, and concluded that Troodos was formed in an island-arc setting. This paper was very shocking for geologists who wanted to establish the basic framework of orogeny by plate tectonics in those days, but epoch-making on the study of ophiolite, and corresponding to the time, when the method of study has changed to be modernized and more interdisciplinary.
著者
関連論文
- S-57 領家帯に残された地質時代のブライトレイヤー((7)内陸地震の震源下限深度における岩石-流体相互作用 : 地質時代のブライトレイヤーから読み解く地殻内流体の挙動,口頭発表,シンポジウム)
- S-47 Micro-XANES分析に基づく単斜輝石、ガーネット、金雲母の酸化還元状態((7)超高圧変成岩の微細解析の最前線,口頭発表,シンポジウム)
- 18aZB-3 酸化マンガンナノファイバーの電気・光学特性II(強相関係・低次元物質・誘電体・磁性体,領域5,光物性)
- 24aWB-10 酸化マンガンナノファイバーの電気・光学特性(24aWB 超伝導体・強相関系・低次元物質法・新光源・新分光法,領域5(光物性))
- 伊豆大島南部海域のマルチ・チャンネル音波探査記録
- リサ-チ 35億年前の付加体の実証 (特集:全地球史はどこまで解明されたか)
- 300 西オーストラリア, ピルバラ地塊太古代ノースポール付加体 : 構成岩の起源と付加構造
- 299 太古代前期の海洋環境と初期生命 : 西オーストラリア、ノースポール地域産、古海嶺起源岩石の記録
- 西オーストラリア・ピルバラ地塊ノースポール地域(3.5Ga)の海嶺熱水性鉱床
- 303. 西オーストラリア、ピルバラ地塊花こう岩/緑色岩帯の太古代付加体
- 301. 西オーストラリア、ピルバラ地塊ノースポール地域の太古代,緑色岩/チャート・コンプレックス
- S-48 放射光マイクロXANESによる中国大別山超高圧変成帯産エクロジャイト中のオンファス輝石のFe^/Fe^比測定((7)超高圧変成岩の微細解析の最前線,口頭発表,シンポジウム)
- 301 西オーストラリア, ピルバラ地塊ノースポール産太古代緑色岩の海洋底変成作用
- 中部地殻温度圧力条件におけるP波速度・S波速度同時測定 : 岩国-柳井領家帯の珪化岩のポアソン比(14.岩石・鉱物の破壊と変形)
- S-47 四国中央部三波川変成帯の形成と上昇機構((5)プレート収束境界における岩石の沈み込み・上昇テクトニクス : 造山帯(変成帯)形成過程研究の新展開,口頭発表,シンポジウム)
- 四国中央部,三波川帯と四万十帯のテクトニクス境界
- 伊豆・小笠原弧北部の火山岩量
- O-159 北海道日高衝突帯南部幌満地域のテクトニクス(15.テクトニクス,口頭発表,一般講演)
- 岩国-柳井領家帯の泥質片岩と珪化岩に認められるコンピテンス較差
- 三波川超高圧変成帯仮説--五良津エクロジャイト岩体の温度圧力構造と変成史 (総特集 変形岩・変成岩とテクトニクス)
- 302 太古代緑色岩の熱水変質作用とCO_2分圧
- 179 北米西岸フランシスカン帯の構造 (その2) : ダイアブロ山地地域
- 178 北米西岸フランシスカン帯の構造(その1) : 北部カリフォルニア地域
- 火山フロントの火砕物質のゆくえ : 伊豆・小笠原弧北端部と房総半島南部間の相鴨トラフでの付加
- 火山プレートと中村一明
- A25 初島南方沖(手石海丘東方)ピストンコア採取の軽石の組成
- 302. 西オーストラリア、ピルバラ地塊ノースポール地域の太古代"T-チャート"と重晶石鉱床の産状
- 377 フランシスカン帯の変成作用
- フランシスカン帯パチエコ峠付近の熱構造 : 変成岩
- B15 伊豆・小笠原前弧域の海底谷の特徴とその成因
- 総説-オフィオライトの起源とエンプレイスメント
- ヤップ島とその周辺海城の地質の研究
- ヤップ島の形成史とフィリピン海プレート南端部のテクトニクス-試論-
- 相模トラフ・駿河トラフ周辺の海底地形
- 衝突帯大断層流体の化学 : 台湾 Lishan 断層中の石英脈流体包有物の化学組成
- O-12 チリ海嶺沈み込み帯東部のタイタオ半島に露出する鮮新世オフィオライトの地質-予報-(2. オフィオライト・マントル岩体・付加体緑色岩・海洋底岩石,口頭発表,一般講演)
- O-269 Qinling-Dabie超高圧変成帯のテクトニクス : 新説『シノ-コリアン地塊がヤンツ-地塊の下に沈み込んだ!』(26. 変成岩とテクトニクス,口頭発表,一般発表)
- 伊豆・小笠原弧の横断掘削--ODP126節成果報告
- Evolution of Oceanic Island Arc-Geology of the Izu-Bonin island and approach from the samples and data of the ODP Leg 126-