Improving the Accuracy of Least-Squares Probabilistic Classifiers
スポンサーリンク
概要
- 論文の詳細を見る
The least-squares probabilistic classifier (LSPC) is a computationally-efficient alternative to kernel logistic regression. However, to assure its learned probabilities to be non-negative, LSPC involves a post-processing step of rounding up negative parameters to zero, which can unexpectedly influence classification performance. In order to mitigate this problem, we propose a simple alternative scheme that directly rounds up the classifiers negative outputs, not negative parameters. Through extensive experiments including real-world image classification and audio tagging tasks, we demonstrate that the proposed modification significantly improves classification accuracy, while the computational advantage of the original LSPC remains unchanged.
論文 | ランダム
- 希土類酸化物を添加したアルカリ系水素吸蔵材料の水素反応特性
- 妊娠を希望する女性および妊婦 (特集 内科医が診る関節リウマチ--State of Art) -- (特殊な状態に対する配慮)
- 社会学的視点からの地球環境学
- Frank O'Hara : The Poet About Town
- 季節風 東京都交響楽団 ベトナム公演の報告と感想