Efficient Beam Pruning for Speech Recognition with a Reward Considering the Potential to Reach Various Words on a Lexical Tree
スポンサーリンク
概要
- 論文の詳細を見る
This paper presents efficient frame-synchronous beam pruning for HMM-based automatic speech recognition. In the conventional beam pruning, a few hypotheses that have greater potential to reach various words on a lexical tree are likely to be pruned out by a number of hypotheses that have limited potential, since all hypotheses are treated equally without considering this potential. To make the beam pruning less restrictive for hypotheses with greater potential and vice versa, the proposed method adds to the likelihood of each hypothesis a tentative reward as a monotonically increasing function of the number of reachable words from the HMM state where the hypothesis stays in a lexical tree. The reward is designed not to collapse the ASR probabilistic framework. The proposed method reduced 84% of the processing time for a grammar-based 10k-word short sentence recognition task. For a language-model-based dictation task, it also resulted in an additional 23% reduction in processing time from the beam pruning with the language model look-ahead technique.
論文 | ランダム
- 台北市における大規模積層集合住宅の住戸平面構成 : 台北市における大規模積層集合住宅に関する研究 その3
- 台北市における大規模積層集合住宅の住棟構成 : 台北市における大規模積層集合住宅に関する研究 その2
- 通勤通学流動からみた地方都市圏の交流構造変容の類型的考察 : 福井都市圏におけるケーススタディ
- 台北都市圏における民間分譲住宅の敷地・住棟・住戸の空間構成(建築計画)
- 住棟ユニットと住戸平面プランの関係 : 台北市における大規模積層集合住宅に関する研究 その3