非線形写像学習のためのPaLM-Treeの提案
スポンサーリンク
概要
- 論文の詳細を見る
This paper presents a novel learning method for nonlinear mapping between arbitrary dimensional spaces. Unlike artificial neural nets, GMDH, and other methods, our method doesnt require complicated control parameters. Providing a feasible error threshold and training samples, it automatically divides the objective mapping into partially linear mappings. Since decomposed mappings are maintained by a binary tree, the linear mapping corresponding to an input is quickly selected. We call this method Partially Linear Mapping tree (PaLM-tree) . In order to estimate the most reliable linear mappings satisfying the feasible error criterion, we employ split-and-merge strategy for the decomposition. Through the experiments on function estimation, image segmentation, and camera calibration problems, we confirmed the advantages of PaLM-tree.
論文 | ランダム
- 間伐材による林道のリ面保護-予-
- 索道の制動機負担を軽くするための簡易風圧制禦機
- コレクション情報とファッションの動向--1999〜2000秋冬コレクション・新しい女らしさ
- 成形プラスチックはすば歯車と平歯車の動的試験の比較 : ポリアセタール樹脂歯車の場合
- 教員養成大学学生の家庭科教育に対する意識調査 : 食生活領域を中心として