非線形写像学習のためのPaLM-Treeの提案
スポンサーリンク
概要
- 論文の詳細を見る
This paper presents a novel learning method for nonlinear mapping between arbitrary dimensional spaces. Unlike artificial neural nets, GMDH, and other methods, our method doesnt require complicated control parameters. Providing a feasible error threshold and training samples, it automatically divides the objective mapping into partially linear mappings. Since decomposed mappings are maintained by a binary tree, the linear mapping corresponding to an input is quickly selected. We call this method Partially Linear Mapping tree (PaLM-tree) . In order to estimate the most reliable linear mappings satisfying the feasible error criterion, we employ split-and-merge strategy for the decomposition. Through the experiments on function estimation, image segmentation, and camera calibration problems, we confirmed the advantages of PaLM-tree.
論文 | ランダム
- 大気中電子ビームの基礎的諸特性の研究
- 統計的方法による心室肥大,特に左室肥大の診断 (心肥大(特集))
- 217 大気中電子ビーム(3) : 2号型試作装置の特性と応用
- Potential Heart Diseaseの診断とその対策 (心疾患々者・管理の問題点(特集))
- 問診から臨床検査まで--心悸亢進