Sensitivity of Uranium Solubility to Variation of Ligand Concentrations in Groundwater.
スポンサーリンク
概要
- 論文の詳細を見る
The sensitivity of uranium solubility to variation of ligand concentrations in the groundwater was systematically evaluated. Predominant dissolution reactions between uranium solubility limiting solids and predominant aqueous species were obtained by means of calculating uranium solubility and speciation using the NEA Thermochemical Data Base of uranium and the geochemical code SOLGASWATER. Logarithm of the mass law equations for the predominant dissolution reactions allowed that logarithmic concentration of total dissolved uranium species, log[UO<SUB>2</SUB><SUP>2</SUP>+]<SUB>Τ</SUB>, was a linear function of pH and logarithm of ligand concentration. The equation for the difference of log[UO<SUB>2</SUB><SUP>2</SUP>+]<SUB>Τ</SUB> between the U-H<SUB>2</SUB>O system and U-ligand-H<SUB>2</SUB>O system was derived from the linear functions in the common pe-pH area of the two systems. Differential coefficients obtained from the difference of log[UO<SUB>2</SUB><SUP>2</SUP>+]<SUB>Τ</SUB> allowed to judge which predominant dissolution reactions are sensitive to the variation of ligand concentrations as follows:<BR>(1) The uranium solubility increases most sensitively with ligand concentrations, according to the following equations;<BR>at pe 10, <BR>UO<SUB>3</SUB>•2H<SUB>2</SUB>O(cr)+3HCO<SUP>-</SUP><SUB>3</SUB>, =UO<SUB>2</SUB>(CO<SUB>3</SUB>)<SUB>3</SUB><SUP>4-</SUP>+3H<SUB>2</SUB>O(1)+H<SUP>+</SUP> (the CO<SUB>2</SUB>-closed system), <BR>UO<SUB>3</SUB>•2H<SUB>2</SUB>O(cr)+3H<SUB>2</SUB>CO<SUB>3</SUB>(aq)=UO<SUB>2</SUB>(CO<SUB>3</SUB>)<SUB>3</SUB><SUP>4-</SUP>+3H<SUB>2</SUB>O(1)+4H<SUP>+</SUP> (the CO<SUB>2</SUB>-open system).<BR>and at pe -4, <BR>UO<SUB>2</SUB>(cr)+4H<SUP>+</SUP>+4F<SUP>-</SUP>=UF<SUB>4</SUB>(aq)+2H<SUB>2</SUB>O(1).<BR>(2) The uranium solubility decreases with ligand concentrations, according to the following equations;<BR>at pe 10, <BR>UO<SUB>2</SUB>CO<SUB>3</SUB>(cr)+2H<SUP>+</SUP>=UO<SUB>2</SUB><SUP>2+</SUP>+H<SUB>2</SUB>CO<SUB>3</SUB>(aq)<BR>(UO<SUB>2</SUB>)<SUB>3</SUB>(PO<SUB>4</SUB>)<SUB>2</SUB>•6H<SUB>2</SUB>O(cr)+4H<SUP>+</SUP>=-3UO<SUB>2</SUB><SUP>2+</SUP>+2H<SUB>2</SUB>PO<SUP>-</SUP><SUB>4</SUB>+6H<SUB>2</SUB>O(1), <BR>(UO<SUB>2</SUB>)<SUB>3</SUB>(PO<SUB>4</SUB>)<SUB>2</SUB>•6H<SUB>2</SUB>O(cr)=3UO<SUB>2</SUB>(OH)<SUB>2</SUB>(aq)+2H<SUB>2</SUB>PO<SUP>-</SUP><SUB>4</SUB>+2H<SUP>+</SUP>, <BR>and at pe -4, <BR>USiO<SUB>4</SUB>(cr) +4H<SUB>2</SUB>O(1) =U (OH)<SUB>4</SUB>(aq)+H<SUB>4</SUB>SiO<SUB>4</SUB>(aq).
- 一般社団法人 日本原子力学会の論文