Prediction of Mechanical Properties of Multi-phase Steels Based on Stress-Strain Curves.
スポンサーリンク
概要
- 論文の詳細を見る
An approach to predict mechanical properties of hot-rolled multi-phase steels referring to the stress-strain curves is proposed. Different from a conventional approach of regression analysis about the relationships between properties and chemical compositions and processing factors, a proposed one is based on the analysis and application of stress-strain curve: several commonly used mechanical properties such as yield strength, tensile strength, uniform elongation, total elongation, work-hardening exponent (n) and Vickers hardness, are derived systematically from the stress-strain curve of a multi-phase steel, which is calculated by using concentration factor, i.e., strain partition ratio and stress-strain curves of constituent phases. Stress-strain curves of individual component structures such as ferrite, pearlite, bainite, and martensite are expressed by Swift's equation. Physical background of the concentration factor is discussed by examining theoretical models of deformation for two-phase materials. Evaluation of plastic relaxation related to microstructural topology might be the most difficult point of this approach and some trials are presented.
- The Iron and Steel Institute of Japanの論文
The Iron and Steel Institute of Japan | 論文
- The Evolution of Precipitates in Nb-Ti Microalloyed Steels during Solidification and Post-solidification Cooling
- Short Contribution to the Study of the Washing Effect in Electromagnetic Stirrers for Continuous Casting
- Nitrogen Bearing Martensitic Stainless Steels : Microstructure and Properties
- A Two-dimensional Finite Element Thermomechanical Approach to a Global Stress-Strain Analysis of Steel Continuous Casting
- Transformation Behavior and Microstructures in Ultra-low Carbon Steels