Influence of Dynamic Recrystallisation on the Tensile Ductility of Steels in the Temperature Range 700 to 1150.DEG.C..
スポンサーリンク
概要
- 論文の詳細を見る
The role of dynamic recrystallisation (DRX) in influencing the hot ductility of plain C-Mn and microalloyed steels was examined by comparing the critical strain for Dynamic recrystallisation with the fracture strain in a hot tensile test. The temperature range examined was 700 to 1150°C and the strain rates were varied from 3×10–2 to 3×10–4 s–1.For coarse grained plain C-Mn and C-Mn-Al steels solution treated at 1330°C and cooled to the test temperature, the presence at the γ grain boundaries of thin films of deformation induced ferrite at temperatures between the Ae3 and the undeformed Ar3, leads to strain concentrations which give rise to poor ductility. The presence of these thin films prevents the occurrence of DRX. For these steels, the Ae3 temperature, which marks the onset of good ductility is generally high enough to lead to DRX, so that it is not possible to assess its independent contribution to restoring the hot ductility. In coarse grained C-Mn-Nb-Al steels, DRX and the full recovery of ductility are often not observed until the test temperature is higher than 1000°C. This is related to the strain-induced precipitation of NbCN below 1050°C. However, even when recrystallisation is not possible, the ductility can be improved if the amount of strain-induced NbCN is reduced.For fine grained plain C-Mn and microalloyed steels heated directly to the test temperature, DRX often occurs in the trough. Grain boundary migration rates have to be sufficiently high to prevent crack linkage from occurring, and this often necessitates the resolution and coarsening of particles so that they are no longer effective in pinning the boundaries. Finally, of interest in this work was the observation that as the initial grain size do is refined, its influence in encouraging DRX becomes more marked than that given by the simple do1/2 relationship in the equation εp=Ado1/2Zn, where εp is the critical strain to the peak stress, Z is the Zener-Hollomon parameter and A and n are constants.
- The Iron and Steel Institute of Japanの論文
著者
-
Jonas J.
Department Of Materials Engineering Mcgill University
-
Mintz B.
Department of Mechanical Engineering and Aeronautics, The City University
-
Abushosha R.
Department of Mechanical Engineering and Aeronautics, The City University
関連論文
- Mathematical Modeling of Mean Flow Stress during the Hot Strip Rolling of Nb Steels
- Mathematical Modeling of the Mean Flow Stress, Fractional Softening and Grain Size during the Hot Strip Rolling of C-Mn Steels
- Influence of Ferrite Rolling Temperature on Microstructure and Texture in Deformed Low C and IF Steels
- TEM Characterization of the Recrystallization Behaviour of Warm Rolled Low Carbon Steels Containing Chromium during the Early Stages of Annealing
- Influence of Ferrite Rolling Temperature on Grain Size and Texture in Annealed Low C and IF Steels
- Mathematical Modelling of Mean Flow Stress during the Hot Strip Rolling of Multiply-alloyed Medium Carbon Steels
- Distinctive Aspects of the Physical Metallurgy of Warm Rolling
- Prediction of Interpass Softening from the Strain Hardening Rate Prior to Unloading
- Modelling Texture Change during the Static Recrystallization of a Cold Rolled and Annealed Ultra Low Carbon Steel Previously Warm Rolled in the Ferrite Region
- Dynamic Strain Aging and the Wire Drawing of Low Carbon Steel Rods
- Spreadsheet Modelling of Grain Size Evolution during Rod Rolling
- Kinetics and Critical Conditions for the Initiation of Dynamic Recrystallization in 304 Stainless Steel
- FEM Simulation of Deep Drawing of Textured Aluminum Sheets Using Anisotropic Fourth-Order Strain-Tate Potential
- Static and Dynamic Strain Aging at High Temperatures in 304 Stainless Steel
- Effect of Silicon on the Interaction between Recrystallization and Precipitationin Niobium Microalloyed Steels
- Effect of Initial Grain Size on the Static Recrystallization Kinetics of Nb Microalloyed Steels
- Static Recrystallization of Nb and Nb-B Steels under Continuous Cooling Conditions
- Ultrasonic Prediction of r-value in Deep Drawing Steels.
- Gibbs energies of formation of TiS and Ti4C2S2 in austenite.
- Effect of Controlled Rolling on Texture Development in a Plain Carbon and a Nb Microalloyed Steel.
- Influence of Dynamic Recrystallisation on the Tensile Ductility of Steels in the Temperature Range 700 to 1150.DEG.C..