MANET Multicast Model with Poisson Distribution and Its Performance for Network Coding
スポンサーリンク
概要
- 論文の詳細を見る
Network Coding (NC) can improve the information transmission efficiency and throughput of data networks. Random Linear Network Coding (RLNC) is a special form of NC scheme that is easy to be implemented. However, quantifying the performance gain of RLNC over conventional Store and Forward (S/F)-based routing system, especially for wireless network, remains an important open issue. To solve this problem, in this paper, based on abstract layer network architecture, we build a dynamic random network model with Poisson distribution describing the nodes joining the network randomly for tree-based single-source multicast in MANET. We then examine its performance by applying conventional Store and Forward with FEC (S/F-FEC) and RLNC methods respectively, and derive the analytical function expressions of average packet loss rate, successful decoding ratio and throughput with respect to the link failure probability. An experiment shows that these expressions have relatively high precision in describing the performance of RLNC. It can be used to design the practical network coding algorithm for multi-hop multicast with tree-based topology in MANET and provide a research tool for the performance analysis of RLNC.
論文 | ランダム
- 褐炭液化生成物の分析法の開発 (分析技術特集)
- 4270 高性能フィルタの捕集性能試験について : (その3)各試験機関での持ち廻り試験について
- 4269 高性能フィルタの捕集性能試験について : (その2)希釈法による捕集性能試験と実測結果
- コムギ高分子量グルテニンサブユニット「5+10」を判別するPCR用DNAマーカーの開発およびその東北地方向けパン用品種への適用
- コムギの製麺適性に関する選抜の実例からみたDNAマーカー育種の現状と将来