An Adaptive Cooperative Spectrum Sensing Scheme Using Reinforcement Learning for Cognitive Radio Sensor Networks
スポンサーリンク
概要
- 論文の詳細を見る
This letter proposes a novel decision fusion algorithm for cooperative spectrum sensing in cognitive radio sensor networks where a reinforcement learning algorithm is utilized at the fusion center to estimate the sensing performance of local spectrum sensing nodes. The estimates are then used to determine the weights of local decisions for the final decision making process that is based on the Chair-Vashney optimal decision fusion rule. Simulation results show that the sensing accuracy of the proposed scheme is comparable to that of the Chair-Vashney optimal decision fusion based scheme even though it does not require any knowledge of prior probabilities and local sensing performance of spectrum sensing nodes.
論文 | ランダム
- 長期観察による糖代謝異常発症のリスク要因
- 角膜上皮幹細胞と輪部のニッチ (特集 ステムセル・エイジング)
- ステムセルはエイジングする
- 目の病気と再生医療 : 臨床応用への取り組みの現状と課題
- 326 重症アレルギー性角結膜炎に対するマイトマイシンCを用いた巨大乳頭切除術の安全性と効果