Latent Conditional Independence Test Using Bayesian Network Item Response Theory
スポンサーリンク
概要
- 論文の詳細を見る
Item response theory (IRT) is widely used for test analyses. Most models of IRT assume that a subjects responses to different items in a test are statistically independent. However, actual situations often violate this assumption. Thus, conditional independence (CI) tests among items given a latent ability variable are needed, but traditional CI tests suffer from biases. This study investigated a latent conditional independence (LCI) test given a latent variable. Results show that the LCI test can detect CI given a latent variable correctly, whereas traditional CI tests often fail to detect CI. Application of the LCI test to mathematics test data revealed that items that share common alternatives might be conditionally dependent.
論文 | ランダム
- 動詞の階層分類の、コーパスベースの会話プログラムへの応用(言語とコーパス,思考と言語一般)
- 小児熱傷における形成外科手術の問題点 (小児熱傷の特異性とその治療(特集))
- 顔面外傷性瘢痕の経過と対策 (形成外科領域におけるfollow upの諸問題(特集))
- 動詞の階層的分類
- 鼻篩骨骨折 Naso-Ethmoid fracture (顎骨骨折の治療(特集))