INTERPOLATION OF MARKOFF TRANSFORMATIONS ON THE FRICKE SURFACE
スポンサーリンク
概要
- 論文の詳細を見る
By the Fricke surfaces, we mean the cubic surfaces defined by the equation $p^2+q^2+r^2-pqr-k=0$ in the Euclidean 3-space with the coordinates $(p,q,r)$ parametrized by constant $k$. When $k=0$, it is naturally isomorphic to the moduli of once-punctured tori. It was Markoff who found the transformations, called Markoff transformations, acting on the Fricke surface. The transformation is typically given by $(p,q,r)\\mapsto (r,q,rq-p)$ acting on $\\boldsymbol{R}^3$ that keeps the surface invariant. In this paper we propose a way of interpolating the action of Markoff transformation. As a result, we show that one portion of the Fricke surface with $k=4$ admits a $\\textrm{GL}(2,\\boldsymbol{R})$-action extending the Markoff transformations.
論文 | ランダム
- 台湾産コウガイケカビ属4種の和合性〔英文〕
- 台湾産水生菌類の研究-1-ブラストクラディア属とカワリミズカビ属〔英文〕
- Total Spinal Blockの循環系に及ぼす影響
- A Histomorphometric Study of the Age-related Changes of the Human Taste Buds in Circumvallate Papillae
- 1A1-A29 作業分析に基づく双腕作業機の改良点抽出