視覚からの対象物抽出に基づいた到達可能領域と拘束領域の推定による対象物操作の学習
スポンサーリンク
概要
- 論文の詳細を見る
It is important for robots that act in human-centered environment to manipulate objects using visual information, where adaptability to unknown factors such as properties of robot body and objects is required. In this paper, we propose a learning method to acquire visual representation of robot body and object that is suitable for motion learning in a bottom-up manner. An advantage of the proposed framework is that it does not require specific hand-coding depending on the visual properties of objects or the robot, such as colors, shapes and sizes. Objects are extracted by a subtraction technique and the state space is constructed by SOM based on the images of extracted objects. Motion of the robot is planned based on reachable set that expresses a region where the object can reach. The task to move an object to a target position is divided into two phases, one to reach a position that is suitable for starting pushing and pulling motion and the other to push and pull the object to the target. The proposed method is verified by experiment of pushing and pulling manipulation of an object with a robot arm.
論文 | ランダム
- 熱も力も接着剤も要らない新接合法
- 320 本溶接品質モニタリング法の有効性の検討 : 溶接部電圧・抵抗によるアプセント溶接品質のモニタリング法(第2報)
- 319 実効溶接部電圧積分値による接合面接溶融層形成の有無の判定 : 溶接部電圧・抵抗によるアプセット溶接品質のモニタリング法(第1報)
- 高電流密度・短時間スポット溶接法によるアルミニウム合金板と軟鋼板の接合(第1報) : 表面処理法の溶接性におよぼす効果
- 148 短時間・高電流密度スポット溶接法による異種金属接合(第2報) : 極性効果について