視覚からの対象物抽出に基づいた到達可能領域と拘束領域の推定による対象物操作の学習
スポンサーリンク
概要
- 論文の詳細を見る
It is important for robots that act in human-centered environment to manipulate objects using visual information, where adaptability to unknown factors such as properties of robot body and objects is required. In this paper, we propose a learning method to acquire visual representation of robot body and object that is suitable for motion learning in a bottom-up manner. An advantage of the proposed framework is that it does not require specific hand-coding depending on the visual properties of objects or the robot, such as colors, shapes and sizes. Objects are extracted by a subtraction technique and the state space is constructed by SOM based on the images of extracted objects. Motion of the robot is planned based on reachable set that expresses a region where the object can reach. The task to move an object to a target position is divided into two phases, one to reach a position that is suitable for starting pushing and pulling motion and the other to push and pull the object to the target. The proposed method is verified by experiment of pushing and pulling manipulation of an object with a robot arm.
論文 | ランダム
- 287 粗い間隔でアラミド繊維補強を施したRC柱の高軸力下における変形性状(建築構造)
- 23141 粗い間隔でアラミド繊維補強を施したRC柱の繰り返し載荷実験 : その2 付着割裂柱と極短柱(柱(2),構造IV)
- 23140 粗い間隔でアラミド繊維補強を施したRC柱の繰り返し載荷実験 : その1 高軸力下における変形性能(柱(2),構造IV)
- 202 粗い間隔でアラミド繊維補強を施した壁付きRC柱に関する実験 : その2 付着割裂柱と極短柱(2.構造)
- 201 粗い間隔でアラミド繊維補強を施した壁付きRC柱に関する実験 : その1 高軸力下における変形性能(2.構造)