Detecting Environmental Change Using Self-Organizing Map Techniques Applied to the ERA-40 Database
スポンサーリンク
概要
- 論文の詳細を見る
Data mining is a valuable tool in meteorological applications. Properly selected data mining techniques enable researchers to process and analyze massive amounts of data collected by satellites and other instruments. Large spatial-temporal datasets can be analyzed using different linear and nonlinear methods. The Self-Organizing Map (SOM) is a promising tool for clustering and visualizing high dimensional data and mapping spatial-temporal datasets describing nonlinear phenomena. We present results of the application of the SOM technique in regions of interest within the European re-analysis data set. The possibility of detecting climate change signals through the visualization capability of SOM tools is examined.
論文 | ランダム
- 第106回日本耳鼻咽喉科学会総会シンポジウム : 耳鼻咽喉科疾患診断の最近の進歩耳鼻咽喉科診断における脳機能画像の応用
- 脳磁図とポジトロン断層法の聴覚・言語領域への応用
- 自転車運動時の局所脳活動変化と末梢との関連(神経・感覚, 第59回日本体力医学会大会)
- 探索的PET研究法を用いた薬物感受性の評価と創薬
- 209.運動時のアキレス腱の糖取り込み : ポジトロン断層法を用いて(代謝)