Graph-Spectral Filter for Removing Mixture of Gaussian and Random Impulsive Noise
スポンサーリンク
概要
- 論文の詳細を見る
We propose, in this letter, a new type of image denoising filter using a data analysis technique. We deal with pixels as data and extract the most dominant cluster from pixels in the filtering window. We output the centroid of the extracted cluster. We demonstrate that this graph-spectral filter can effectively reduce a mixture of Gaussian and random impulsive noise.
著者
-
URAHAMA Kiichi
Faculty of Design, Kyushu University
-
QIU Yu
College of Communication Engineering, Chongqing University
-
DU Zenggang
Faculty of Design, Kyushu University
関連論文
- バイラテラルフィルタを用いる再構成誤差最小化反復法による単一画像の超解像
- 非等方バイラテラルフィルタによる画像再構成を利用する単一画像の超解像
- 非等方バイラテラルフィルタによる画像再構成を利用する単一画像の超解像
- Graph-Spectral Filter for Removing Mixture of Gaussian and Random Impulsive Noise
- GENERATING ILLUSTRATION IMAGES WITH ISOLUMINANT COLORS(International Workshop on Advanced Image Technology 2006)
- IMAGE RECOLORING BY EIGENCOLOR MAPPING(International Workshop on Advanced Image Technology 2006)
- Multimedia Search Based on Non-Negative Matrix Factorization
- Robust Fuzzy Clustering of Similarity Data